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The physical- and orientation-space transport of non-spherical, generally non-neutrally 
buoyant, Brownian particles in unbounded homogeneous shear flows is analysed with 
the goal of studying the respective effects of the orientational degrees of freedom of 
such particles upon their sedimentation and dispersion rates. In particular, the present 
contribution concentrates on the interaction between the Taylor dispersion mechanism 
(arising from coupling between the orientational dependence of the particle’s 
translational velocity and the stochastic sampling of the orientation space via rotary 
Brownian diffusion) and the shear velocity field. 

Making use of a recent extension of generalized Taylor dispersion theory to 
homogeneous (unbounded) shear flows, the mean transport process in physical space 
is modelled by a convection-diffusion problem characterized by a pair of constant 
phenomenological coefficients, provided that the eigenvalues of the (constant) 
undisturbed velocity gradient are purely imaginary. The latter phenomenological 
coefficients - namely, U*, the average ‘slip velocity’ vector (of the particles relative to 
the ambient fluid), and D*, the dispersivity dyadic or, equivalently, the pair of dyadics 
and Dc (or D“), the average mobility and the Taylor (or modified Taylor) dispersivity, 
respectively - are evaluated both asymptotically (in the respective limits of small and 
large rotary PeclCt numbers) as well as numerically (for arbitrary PeclCt numbers). 

It is established that (up to a scalar multiplication factor, independent of PeclCt 
number) the anisotropic portion of the average mobility is formally equivalent to the 
direct diffusive contribution to the particle stress in the context of suspension rheology. 

The analysis focuses mainly on the case of simple shear flow. The approximate 
calculation in the limit of large Peclkt numbers, Pe 9 1, which makes extensive use of 
the ‘natural coordinates’ along Jeffery orbits previously introduced by Leal & Hinch, 
verifies that, if the external force is non-orthogonal to the direction along which 
(undisturbed) fluid velocity variations occur, two of the eigenvalues of Dc are 
proportional to Pe; moreover, one of these O(Pe) eigenvalues is negative. When the 
external force is parallel to the latter direction, the negative eigenvalue corresponds to 
the principal direction of contraction in the shear velocity field; this thus relates the 
non-positive nature of Dc to the interaction between the Taylor dispersion mechanism 
and the (deterministic) convection within the shear field. 

Explicit results for the variation of the dyadics M, Dc and bc jointly with the 
respective magnitude of the shear rate and the deviation of the particle geometry from 
a spherical shape are presented for spheroidal particles. Among other things, it is 
demonstrated that the proposed definition of the modified Taylor dispersivity 
coefficient, Dc, does indeed yield a non-negative dyadic. 
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1. Introduction: formulation of the problem 
Transport in shear flows of Brownian particles lies at the heart of a wide variety of 

environmental (e.g. the dispersion of pollutants in rivers and the atmosphere), 
physiological (e.g. the transport of tracers, contaminants, or nutrients in blood flow) 
and engineering (e.g. mixing) processes. In many instances the distance from the point 
where the particles are introduced into the flow to the nearest boundary of the 
suspending fluid domain, as well as the lengthscale over which fluid velocity-gradient 
variations take place, are ‘large’ (in some loose sense). This fact allows a simplified 
formulation of the actual problem, by considering instead transport of the particles in 
an unbounded homogeneous (linear) shear flow. 

Existing literature has, by and large, concentrated on the diffusion of spherical 
Brownian particles in homogeneous shear flows (Elrick 1962; Frankel & Acrivos 1968; 
San Miguel & Sancho 1979; Foister & van de Ven 1980; Dufty 1984; Hess & 
Rainwater 1984; Leighton 1989, to mention just a few contributions; but see Sarman, 
Evans & Cummings 1991, for a slight variant of these). The goal of the present 
contribution is thus to examine the influence of the orientational degrees of freedom 
on the transport in homogeneous shear flows of non-spherical Brownian particles. 
Specifically, we focus on the contribution to such transport processes of the Taylor 
dispersion mechanism arising from interaction between the rotary diffusion of such 
particles and the orientational dependence of their translational velocities. 

Assuming the suspension to be dilute, we consider here the motion of a single tracer 
particle, whose shape we suppose to be axisymmetric (as well as possessing fore-aft 
symmetry). The geometric configuration of such a rigid body is completely specified by 
the position R = (x, y ,  z) in three-dimensional physical space of its centre together with 
its instantaneous orientation, represented by e ,  a body-fixed unit vector lying along the 
particle’s symmetry axis (see figure 1). The statistical description of the particle’s 
motion is embodied in the conditional probability density P = P(R,  e, t I R’, el), 
denoting the probability of finding the particle at time t > 0 with its centre situated at 
the physical-space position R,  and possessing the orientation e ,  given that the particle 
was originally introduced at time t = 0 at position R‘ with the orientation e’. This 
probability density satisfies the continuity equation 

in which 
q a t  + v,  - J +  V, j = 0, (1.1) 

J = [ V(R’)+ ( R -  R’) - G+F. M(e)]  P - D ( e )  a V ,  P (1.2) 

and j = tP -d ,V ,P  (1.3) 
are, respectively, the physical- and orientational-space flux density vectors. In the 
latter, t E de/dt is the ‘convective’ (deterministic) time rate of change of the particle’s 
orientation which, for the present case, is given by the expression (cf. Brenner & 
Condiff 1974) 

in which A = $(G- Gt) and S = :(G+ Gt) are, respectively, the antisymmetric and 
symmetric portions of the undisturbed, homogeneous fluid-velocity gradient G, and / 
is the dyadic idemfactor. Moreover F is the (constant) external force, typically gravity, 
acting on the particle, assumed to be independent of the particle’s position R and 
orientation e ,  as well as of the time t. Additionally, in the foregoing, M ( e )  is the 
translational mobility dyadic, which in body-fixed axes may be written in the 
transversely isotropic form 

(1.5) 

t =  e . A + h ( / - e e ) e : S ,  (1.4) 

M = MI,  ee + ML(/ - ee) 
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FIGURE 1. Definition of the axisymmetric particle’s position R = (x, 
and orientation e = (0, $). 

appropriate to a body of revolution; the constant scalars MI, and M L  correspond, 
respectively, to translational motions parallel and perpendicular to the axis of 
symmetry of the particle. The translational diffusivity dyadic may be obtained from 
knowledge of the mobility via the Stokes-Einstein relation, 

D = kTM (1.6) 

(cf. Brenner 1967), with k Boltzmann’s constant and T the absolute temperature. The 
scalars d, and h are, respectively, the rotary diffusion coefficient for particle rotation 
perpendicular to the symmetry axis and the intrinsic rotational shear-diffusion 
coefficient. As V(R’) represents the undisturbed fluid-velocity vector at the physical 
space position R’, the sum V +  (R  - R’) G is the undisturbed fluid velocity existing at 
R.  Furthermore, 

and 

(1.7a) 

(1.7b) 

are, respectively, the physical- and orientation-space gradient operators. (Here (e, i,, 
i4) is a right-handed triad of body-fixed unit vectors in a frame attached to the particle, 
with e = e(0, $) the spherical polar unit radial vector, in which (0, $) are the spherical 
polar (Eulerian) angles parameterizing the orientation of the particle relative to a set 
of space-fixed Cartesian axes, cf. figure 1.) 
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The continuity and constitutive equations (1.1)-( 1.3) are supplemented by the 

( 1.8) 

assuring inter alia that P decays exponentially rapidly at large distances from the point 
R‘ of initial introduction of the particle into the system. Additionally, it is required that 
P be continuous and single-valued in the orientation-space variable e (which space can 
be represented effectively by S,, the surface of a unit sphere). To the foregoing we 
adjoin the initial condition 

boundary conditions 

I R - R‘I (P, J, j )  = (0, 0,O) as I R - R‘ I + 00 (rn = 0, 1 ,2, . . . ), 

where the Dirac-delta-function distributions possess the explicit representations 

6(R - R’) = S(x - x’) Sgi - y / )  6(2 - 2’) (1.10a) 

S(e - el) = (sin 0)-’6(0- 0’) S(q5 - 4’). (1.10 b) 

The initial- and boundary-value problem posed by (1.1)-( 1.3), (1 3) and (1.9) 
uniquely determines P 2 0, which is readily shown to satisfy the normalization 
condition 

and 

Pd2ed3R = 1 for all t 2 0, (1.11) 1% 1% 
requiring that the total probability of finding the (centre of the) tracer particle 
somewhere within the phase space be conserved. In the latter relation, d3R E dx dy dz 
is a physical-space volume element and d2e = (sin 0) d0 dq5 is an areal element on the 
surface of the unit sphere. Furthermore, the solution of the foregoing ‘instantaneous 
source’ problem can serve as the appropriate Green’s function for the more general 
problem where (1.9) is replaced by an arbitrary initial distribution. 

The calculation of P is a rather formidable task requiring the solution of the above 
initial- and boundary-value problem within the five-dimensional phase space R, 0 S,. 
(In fact, the only previous attempt to address this problem of which we are aware was 
made by Cerda & van de Ven (1983), who examined the translational motion of a 
neutrally buoyant Brownian spheroid in simple shear flow. Assuming large rotary 
PeclCt numbers (cf. (2.22)), they decoupled the translational and rotary motions (in a 
manner which does not appear to us to be entirely consistent).) However, one is 
generally not interested in the exhaustively detailed information provided by knowledge 
of the exact solution P, but rather only in its orientational average, 

P(R, t I R’, el) sf Pd2e, 1% (1.12) 

describing transport of the particle (centre) within physical space, irrespective of the 
particle’s instantaneous orientation. 

In the next section we make use of a recent extension (Frankel & Brenner 1991) of 
generalized Taylor dispersion theory, enabling us to obtain a long-time asymptotic 
description of P that does not require apriori knowledge of P itself. This latter, coarse- 
grained, approximation consists of the formulation in physical space of a model 
convection-diffusion problem characterized by a pair of constant phenomenological 
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coefficients respectively representing the particle's mean velocity and dispersivity. 
Subsequent sections present the calculation of these coefficients in the asymptotic cases 
of small and large rotary Peclkt numbers ($3  and $4, respectively) and for arbitrary 
Pecltt numbers (in $5).  Explicit results are obtained in $6 for spheroidal particles, 
which provide the basis for a discussion of the respective effects of the magnitude of 
shear rate and of the geometry of the particles (i.e. its deviation from a spherical shape) 
upon the mean transport process in physical space. 

2. Recapitulation of generalized Taylor dispersion theory for homogeneous 
shear flows 

The problem formulation outlined in the preceding section is readily verified to 
conform to that of the generic problem underlying generalized Taylor dispersion 
theory when one recognizes the equivalence relations 

R- tQ,  e - tq ,  (2.1 a, b)  

which identify the physical-space position and orientation of the particle with the 
respective 'global ' and 'local ' coordinates of the abstract multidimensional phase 
space Q, 0 qo of the latter theory. Upon making use of the results of Frankel & 
Brenner (199 1) for unbounded, homogeneous shear fields, it is established that when 
the eigenvalues vi of G are purely imaginary,? i.e. 

Re{vi} = 0 ( i  = 1,2,3), (2.2) 
(with Re{} denoting the real part of the quantity in braces), the leading-order long-time 
(d, t % 1) asymptotic behaviour of P is given by the solution of the 'model' 
convection4iffusion problem, 

a P p t  + v, . J =  0, ( 2 . 3 ~ )  
J =  [ V(R') + (R - R) - G + 01 P -  D * V, P, (2.3 b) 

subject to the boundary conditions 

IR-R'I"(P,J)+(O,O) as IR-R'I+co ( m = 0 , 1 , 2  ,... ), ( 2 . 4 ~ )  

and initial condition 
S(R-R') ( t  = 0) 

P = {  0 ( t  < 0). 
(2.4b) 

These equations constitute the purely physical-space counterpart of the exact equations 
(1. l), (1.2), (1.8) and (1.9), respectively. 

The constant (i.e. time-, position- and orientation-independent) phenomenological 
coefficients 0 and d appearing in the model flux-vector constitutive equation (2.3 b) 
are related to the long-time asymptotic rates of change (for m = 1 and 2) of the total 
statistical polyadic moments 

M m e f j R m I  (R-R')"Pd2ed3R (m=0,1,2,  ...) 

t As explained in the general theory (Frankel & Brenner 1991), the kinematical significance of this 
restriction is that it excludes the possibility that R, the position of the particle in physical space, 
diverges exponentially rapidly as a result of passive convection in the shear field. Thus (2.2) renders 
the latter a 'slow' process relative to the (exponentially rapid) relaxation of the orientational 
distribution via rotary Brownian diffusion. 

s2 
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of the probability density. The existence of these moments is guaranteed by the 
boundary condition (1.8), which assures that the preceding momenta1 integrals 
converge. The ‘classical’ paradigmatic definitions (cf. Brenner 1980, 1982), namely 

and 

- dM1 U = lim- 
t-m dt 

I d  d = lim--(Mz-MIMl), 
t+cc 2 dt 

(2.5a) 

(2.5b) 

of the macroscale phenomenological coefficients U and 6, fail in the present problem 
to yield stationary and invariant coefficients because, when G + 0, the asymptotic 
behaviour of Ml and M, - Ml Ml is nonlinear in t. It is, however, observed in Frankel 
& Brenner (1991) that, for long times, the respective codeformational (‘Oldroyd’) rates 
of change do attain stationary and invariant limits, namely 

and 

1 s  lim--(M2-MlMl) 
t+,28t 

- lim- - ( M , - M I M l ) - ( M , - M I M l ) .  G - G f . ( M , - M I M l )  = D*. (2.7) 
t-m 2 dt 1 

The foregoing codeformational derivatives (cf. Bird, Armstrong & Hassager 1987) 
eliminate the contribution of the rate of passive convection of the tracer particle in the 
shear field. Thus, u* represents the average ‘slip velocity’ of the particle relative to the 
fluid, while D* represents the rate of spread of a ‘cloud’ of solute particles without the 
contribution of the shear to the rate of distortion of this cloud. 

The constants u* and D* are respectively obtained via the following quadratures 
over the orientational space : 

u * = M . F ,  (2 .8~)  

where (2.8b) 

is the mean translational mobility dyadic, and 

D* = DM + Dc, (2.9a) 

in which 

(cf. (1.6)), and 

DM gf Is, P,“(e) D(e) d2e E kTM 

Dc Ef s,, Pr(e)  [B(e) M(e) - FIS d2e 

(2.9b) 

(2.9 c) 

are, respectively, the ‘molecular’ and ‘Taylor’ contributions to the dispersivity dyadic 
D*. In the latter relation, the operator [Is denotes the fully symmetrized polyadic 
appearing within the double brackets; the orientation-specific fields P; and B are to 
be defined presently. 
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Equations (2.6) and (2.7) represent the natural extension to shear flows of the 
classical (Brenner 1980, 1982) Taylor dispersion expressions (2 .5~~)  and (2.5 b), 
respectively ; indeed, choosing 

o = v ,  D = D *  (2.1 0 a, b) 

assures the long-time matching of the leading-order temporal asymptotic behaviour of 
the statistical moments of the respective solutions of the exact and model problems. 
However, by making use of the equations governing the vector B-field (see (2.19) 
below) in conjunction with some vector identities, one can show that 

where 

(2.11~) 

(2.1 1 b) 

which latter dyadic is clearly positive-definite. While D* = 6* when G = 0, the former 
may not be non-negative when G $: 0. Frankel & Brenner (1991) have established that 
within the framework of the leading-order approximation, long-time matching is still 
achieved when (2.10 b) is replaced by 

D = D*. (2.12) 

This choice also ensures that the solution of the model problem is well behaved at all 
times. 

The scalar field PF(e), defined by the long-time limit of the zero-order, 'local' 
moment field (Brenner 1980), 

Po(e, t I R', e') = P(R,  e, t I R', e') d3R, (2.13) 

represents the conditional probability density of finding the particle possessing the 
orientation e, irrespective of its instantaneous physical space position R,  given its 
initial position R' and orientation e'. The fact that the long-time limit of Po is a 
stationary and invariant (i.e. independent of both t and e') equilibrium orientation 
distribution constitutes a fundamental feature of the generalized Taylor dispersion 
paradigm. In the present problem, P,"(e) satisfies the rotational convective-diffusion 
equation (cf. Frankel & Brenner 1991, their equation (3.6)) 

V ,  * ( i P r  - d, V ,  P,") = 0,  (2.14~) 

1% 

along with the normalization condition 

P," d2e = 1 (2.14b) 

and the requirement of continuity and single-valuedness on S,. The above problem is 
identical to that posed for the steady-state orientational distribution function in a 
homogeneous shear flow of a dilute suspension whose particles are uniformly 
distributed throughout physical space. This latter problem has been extensively studied 
in the contexts of streaming birefringence and rheology of suspensions (Burgers 1938 ; 
Peterlin 1938; Scheraga, Edsall & Gadd 1951 ; Scheraga 1955; Leal & Hinch 1971; 
Hinch & Leal 1972; Stewart & Sorensen 1972; Brenner & Condiff 1974; Krushkal & 
Gallily 1984, to cite just a few contributions). 
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Use is made of the foregoing equivalence in subsequent sections. Here, we point out 
another useful equivalence, which is a corollary of the former one. To this end we 
define 

(2.15) - def - A M  = M - $(Mil + 2MJ /. 

As such, A M  expresses the departure of the average translational mobility n7i from the 
isotropic result corresponding to sedimentation in a quiescent fluid (Brenner & Condiff 
1972). Substitute (1.5) and (2.15) into the definition (2.8b) to obtain 

A M  = (Mil - M,) (1 P,"(e) ee d2 e - $1). 
SZ 

(2.16) 

Thus, A M  involves the same orientational moments (' goniometric factors') as those 
appearing in @, the 'direct' rotary diffusion contribution to the particle stress in the 
context of suspension rheology (cf. Brenner 1972). 

The vector B(e)-field is defined by the long-time limit 

t-m 
(2.17) 

<(e, t I R', e') = RP(R, e, t I R', e') d3R (2.18) where 

is, by definition, the first-order, local moment of the distribution function P. As such, 
the first term appearing on the right-hand side of (2.17) represents the average physical- 
space position of the tracer given that its instantaneous orientation is e, whereas MI 
represents the average position without the latter constraint. That the long-time limit 
of the difference between these two average positions is indeed the stationary and 
invariant vector B(e)-field is established by Frankel & Brenner (1991, 95). In the 
present context, B is governed by the boundary-value problem 

V, - [CP," B-d, V,(P," B)] - P," B * G = P,"(M - (2.1 9 a) 

1% 

* F 

in conjunction with the normalization condition Is, P," Bd2e = 0, (2.1 9 b) 

together with the requirements of continuity and single-valuedness on S,. 
For future reference it is useful to express the problems formulated above for P," and 

B explicitly in terms of the Eulerian angles (O,q5) relative to a space-fixed Cartesian 
system. Towards this end, write 

C = GC, (2 .20~)  

where G is some appropriate norm of G (cf. (2.26)) and 

i = i,B+i,qjsine, (2.20 b) 

in which 8 ( O ,  q5) and &O, q5) are dimensionless rates of change (obtainable from (1.4) 
once G is specified). Substitute (2.20) into (2.14) and utilize the definition (1.7b) of V, 
to obtain 
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and 

with 

[l;P,"sinOd#d0 = 1, 

Pe = G/d, 

(2.21 b) 

(2.22) 

the rotary Pecltt number. Define the dimensionless dyadic field b(e) via the expression 

where F = 14 and P = F/F,  and use (lS), (2.8), (2.20) and (2.22), to obtain from (2.19) 
the following equations governing the scalar components of b = b,(0, $) (i,j  = 1,2,3): 

- Pe 6!k bkj = P,"Cr,,-Kj), (2.24a) 

together with [ ~ ~ b i j s i n B d q 5 d 0  = 0. (2.24 b) 

In the last term on the left-hand side of (2.24b), G = G/G is the dimensionless velocity 
gradient; moreover, summation on repeated indices is implied. In the forcing term 
appearing on the right-hand side of (2.24a), fii denotes the Cartesian components of 
the dyad ee in the space-fixed frame, whereas 

Jj Ef s' P,"(ee),, sin 19 d$ d0. 
0 0  

(2.25) 

Much of the subsequent development focuses on the case of simple shear flow, where 

V = i, Gy. (2.26) 

(For this flow, the eigenvalues of G are vi = 0 (i = 1,2,3); thus, the requirement (2.2) 
of the general theory is trivially satisfied.) From (1.4) and (2.20) we find for this shear 
flow that 

(2.27a, b) 

Additionally, the general coupling which exists between the (2.24a) for the various b,, 
is somewhat relaxed, since these can now be written as 

the fluid velocity is taken to be (cf. figure 1) 

S = ;A sin 28 sin 24, qi = ;(A cos 24 - 1). 

= P,"Kj -xj) +Pest, bZi, (2.28) 
where Si, is the Kronecker delta. 

In the following sections we address the calculation of P," and b. This accomplished, 
one can proceed to evaluate the resulting macroscopic phenomenological coefficients. 

3. Dispersion in weak (homogeneous) shear (Pe < 1) 
The case where Brownian rotation dominates the effect of the shear on the 

orientational distribution function (corresponding to small Pecltt numbers, Pe << 1) is 
analysed in this section. In particular, upon making use of polyadic surface spherical 
harmonics (Brenner 1964a, b), the respective asymptotic expansions for the scalar field 
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P,"(e) and vector field P,"B(e) are both obtained in invariant form (for arbitrary 
homogeneous weak shear field), from which the macroscopic transport coefficients for 
a homogeneous axisymmetric and centrosymmetric particle are subsequently cal- 
culated. 

3.1. Calculation of P," 
As observed above, the problem posed for P,", namely (2.14) in conjunction with (1.4), 
is formally equivalent to that for the steady-state orientational distribution function 
arising from the homogeneous shear of a suspension of non-spherical Brownian 
particles when these are uniformly distributed throughout physical space. We thus 
simply adopt the solution of the latter problem, already available in the literature (cf. 
Brenner & Condiff 19741, namely 

-&Aee:(A.s ) ]+O(Pe3)} ,  (3 .1)  
where 3 and A are, respectively, the symmetric and antisymmetric parts of the 
dimensionless velocity gradient G, and (. )" denotes m successive scalar contractions. 

3.2. Average translational mobility 
Substitute (3.1) into (2.16) to obtain the dimensionless form of A M ,  (2.15), namely 

(3.2a) 

wherein (cf. Brenner & Condiff 1974) 
(3.2b) 

exclusively represents the functional dependence of Am upon Pe. (The scalar factor 
multiplying Am in (3.2a) depends solely upon the shape of the particle.) 

3.3. The dyadic b field 
Upon substituting the definitions (2.20a) and (2.23) into (2.19) one obtains the 
differential equation 

AG x hPe 3 +A h2Pe2 [ 3 S  - s - (3.- S) r )  --+APe2(i - S - S - A) + O(Pe3) 

M-M 
MI, - M ,  

V,2b- Pe V, - (ib)+ Pe Gt - b = - P," 

in conjunction with the normalization condition 

ls2 bd2e = 0. 

Assuming an asymptotic expansion of the form 

(3.3 a) 

(3.3 b) 

b TZ b,(e)  + Pe b,(e)  + Pe2 b , (e )  + O(Pe3) (3.4) 
and making use of (3.1), (3.2) and (1.5) one arrives at a sequence of boundary-value 
problems for bi ( i  = 0, 1,2, . . . ). These are solved recursively? by expressing the forcing 
terms appearing at each stage in terms of polyadic surface harmonics. The resulting 
equations are then readily inverted when use is made of the eauation (Brenner 
1964 a, b) 

V,Z P, = -n(n + 1) P, (n = 0, I, 2, . . . ) ( 3 . 5 )  
t Details of the calculations outlined here as well as in subsequent sections may be obtained upon 

request directly from the authors or from the Journal of Fluid Mechanics Editorial Office. 
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satisfied by the polyadic surface spherical harmonic Pn(e) of degree n, together with the 
orthogonality property 

r 
PmPnd2e=0 ( m + n ) .  J sz 

3.4. Taylor dispersivity 
From ( 2 . 9 ~ )  in conjunction with ( l S ) ,  (2.23), (3.3b) and the definition 

(3.6) 

one may write 

wherein the dimensionless dyadic 

(3.8a) 

(3.8b) 

excl1:sively represents the functional dependence of Dc upon Pe. A straightforward 
calculation leads to the small-Peclkt-number expansion 

Dc M D: + Pe B,c + Pez D,c + 0 ( ~ e 3 ) ,  (3.9) 
whose dyadic coefficients are tabulated elsewhere.? 

3.5. Transport coeficients in simple shear 
The invariant results mentioned above are now specialized to the case for which 

G = ( i  I i), 
corresponding to (2.26). 

(3.10) 

Average translational mobility 
For simple shear, the dimensionless dyadic A M  (3.2b), possesses the eigenvalues 

v1,2 x &+APe+&A2 Pe2+O(Pe3), v3 NN -&A2 Pe2+O(Pe3), (3.11~-c) 
together with the corresponding eigenvectors 

ul,, M ( 1 ,  f 1 -+Pe, 0), u3 = (O,O, 1) .  (3.12~-c) 
As could have been anticipated (cf. Brenner & Condiff 1974), the principal directions 
of AM (as well as those_ of NI) coincide, to the leading order in PeclCt number, with 
those of the strain rate S. Within this same order of approximation, the eigenvalues v1 
and v, show, respectively, an increase in the average 'slip velocity' (of the particle 
relative to the fluid) in the direction u, of extension, and a comparable decrease in the 
direction u, of contraction. With increasing PeclCt number the principal directions of 
AM (and NI) rotate about the direction - i3 of the undisturbed vorticity vector, so that 
u, becomes closer to the direction i, of the undisturbed fluid velocity vector. The 
second-order, O(Pe2), contributions to vi show a uniform increase in the plane (il, i,) 
of the flow, and a concomitant decrease in the direction of i3. Obviously, the basic 
conclusions of the foregoing discussion are also attributable to the 'molecular' 
contribution DM of the translational diffusivity D to D* (2.9a, b). 

t Cf. the footnote following (3.4). 
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Finally, it is worthwhile mentioning that the components of A M  (not presented 
explicitly) are essentially the same (up to a normalization factor independent of Pe) as 
the results of Giesekus (1962) for T ~ ,  the direct diffusive contribution to the 
particle stress. This is not surprising in the light of the general equivalence established 
in the preceding section (cf. (2.16) et seq.). 

Taylor dispersivity dyadic 
In the next section, which deals with the opposite limit of large Peclet numbers, it is 

concluded that the most significant interaction between 'Taylor ' dispersion mechanism 
and the shear field takes place when k = i,, i.e. when the external force acts parallel to 
the gradient of the undisturbed fluid speed. For subsequent comparison, we focus here 
too on this case. A straightforward calculation yields the eigenvalues 

( 174h2 + 630h + 245), 2 Pe2 
v1 x-+ 135 2381400 

(3 1 59h2 + 4200h + 1225), 1 Pe2 
90 11907000 

v2 x -- 

(1 lh2 + 90h + 3 9 ,  1 Pe2 
90 453600 

v3 x 

(3.1 3 a) 

(3.13 b) 

(3.13 c) 

together with the corresponding eigenvectors 

u , = ( ~ P e , l , O ) ,  u,=(l,-=Pe,O), 42 u,=(O,O,l). (3.14a-c) 

The leading-order values correspond to sedimentation in a quiescent fluid (cf. Brenner 
1979). The principal directions u, and u,, respectively corresponding to the smallest 
and largest of the above eigenvalues, are rotated with increasing Pe (within the plane 
of the flow) towards the principal directions of strain, respectively corresponding to 
pure contraction and pure elongation. 

4. Dispersion in simple shear flow: weak-Brownian-rotation limit (Pe 9 1) 
This section addresses the dispersion of axisymmetric centrosymmetric Brownian 

particles in the limit Pe 9 1, where the effect of shear dominates that of rotary 
Brownian diffusion.? The analysis follows the approach of Leal & Hinch (1971) and 
makes extensive use of their elegant 'natural' or 'orbit' coordinates (C, 7). These are 
related to the Eulerian angles through Jeffery's (1922) solution, 

8 = tan-' [C(r2 sin2 7 + cos2 T)$], q5 = cot-l(r tan 7), (4.1 a, b) 
where 7 = rGt/(r2 + 1). (4.1 c) 

4.1. The field P," 
In accordance with the comments following (2.14), the problem posed for Po", (2.21) 
and (2.27), is formally equivalent to the problem of the steady-state orientational 
distribution, calculated by Leal & Hinch (1971) and Hinch & Leal (1972). In order to 

t In fact, the resulting asymptotic expansions are uniformly valid provided that Pe & r3 + r-3, 
where r is the (equivalent) particle axis ratio. This stronger requirement ensures that the effects of 
Brownian rotations are weak throughout the entire orientation space, thus excluding the so-called 
'intermediate' singular case (Hinch & Leal 1972). This restriction limits somewhat the practical utility 
of subsequent results by excluding both 'rod-like' (r + 1) and 'disk-like' (r < 1) particles. 
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render unique the limit 
condition (similar to the 
Reynolds numbers) : 

of weak rotary diffusion, they derive the following integral 
result of Batchelor 1956 for closed-streamline flows at large 

/cdsv.V,P,"=O, ( 4 4  

where ds is an element of arclength along the closed Jeffery orbit c, and v is an 
outwardly directed unit normal to the contour c, tangent to the surface of the unit 
sphere. The asymptotic, large-PeclCt-number calculation yields for P: the expansion 

(4.3) 
whose coefficient functions were obtained by Hinch & Leal (1972) 

4.2. Average translational mobility 
The calculation of M is closely analogous to that of the diffusion contribution to the 
bulk particle stress, carried out by Hinch & Leal (1972) (cf. (2.16)pt seq.). Upon 
making use of (1.5) and ( 3 . 2 ~ ) ~  the Cartesian scalar components of AM are written as 

withxj defined as in (2.25). 4 s  with the particle bulk stress, PrC0) contributes only to 
the diagonal elements of A M  [(Amjj, i = 11, whereas the correction PFC1) contributes 
only to the off-diagonal elements (i =+ j). The eigenvalues of A M  are 

P," x P,"(O) (e) + Pe-l P;(l) (e) + O(PeP2), 

(A&, = 15(& -&), (4.4) 

vi E 15 fC)-- +O(Pe-2) ( i =  1,2,3), (4.5~-c) (- 9 
whereas the corresponding eigenvectors are 

u, = (O,O, 1). (4.6 c)  
(The expressions forfg),fg),fg) andfii) can be found elsewhere.?) Thus, when Pe + co 
the rotation about -i3 of the principal directions of M, u1 and u2, pointed out in the 
preceding section (cf. (3.12) et seq.), is completed, and u, becomes aligned with the 
direction of the undisturbed fluid velocity. 

4.3. The dyadic b-field 
The scalar Cartesian components b,, satisfy (2.28) and (2.24b), which are rewritten here 
in the respective forms 

V, - (tb,,) - Pe-l V,Z bgj = Pe-'Ttj + St, b2i ( 4 . 7 ~ )  

and Js, b, d2e = 0. (4.7 b) 

Following Leal and Hinch (cf. (4.2)), the above equations are supplemented by the 
integral condition IC ds v V, b, = - q,, d2e + Pe S,, b, d2e. s, s, (4.7 c )  

This is obtained by integration of ( 4 . 7 ~ )  over the domain S lying on the surface of the 
unit sph$re, which is bounded by the Jeffery orbit c, upon taking advantage of the fact 
that v - t = 0 on c. In the foregoing, 

Ti, = PO"cf,i (4.8) 
t Cf. the footnote following (3.4). 
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(cf. (2.28)). The latter can be represented by the expression 
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cpt,(e) w q$) (e )  + Pe-'@(e) + O(Pe-'), (4.9) 
which suggests that b, too possesses an asymptotic expansion in descending powers of 
PeclCt number. While cpgj is symmetric by definition, owing to the last term on the right- 
hand side of ( 4 . 7 ~ )  the single symmetry relation satisfied by b, is b,, = b3,. In the 
following we outline the asymptotic calculation of the respective leading-order terms 
of bij. Further details as well as calculation of higher-order terms relevant to the 
subsequent derivation are provided elsewhere.? 

When i =k 1 ,  the respective last terms on the right-hand sides of both ( 4 . 7 ~ )  and 
(4.7 c) vanish. We therefore assume that 

b, w b$) + Pe-lb$) + O(PeP).  (4.10) 

The problem for b$') possesses a non-trivial solution only if the first term on the right- 
hand side of (4 .7~)  does not vanish upon substitution of the corresponding &'). 

Making use of the orbit coordinates (C,T)  one readily concludes from symmetry 
considerations that the above-mentioned forcing term does vanish when i + j ,  hence 
the relevant b, satisfy 

bg) = b(O) 23 = b(0) 31 = b(0) 32 = 0 . (4.1 1) 

For i = j ,  we write the leading-order equation resulting from (4.7a) in terms of the orbit 
coordinates 

q g - l b $ ) )  = 0, (4.12) 
a7 

which is readily inverted to yield 

b$' = p$'(c) g(C, 7). 

Appearing in the above are 
(4.13) 

(4.14) 

and p$') which, as indicated by their respective arguments, are functionally dependent 
only upon the coordinate C (the orbit parameter). These latter functions are 
determined via substitution of (4.13) into (4 .7~)  resulting in a linear, first-order, 
inhomogeneous differential equation which is integrated in conjunction with the 
normalization condition (4.7 b). 

When i = 1, the leading order of b, depends upon the order of the corresponding bZi. 
Since b, w @Pep') for j = 1,3 ,  it can be verified that the expansion (4.10) together 
with the expression (4.13) remain appropriate. (Note, however, that b$), j = 1,3 ,  are 
fully determined only after the corresponding b$ have been calculated.) Finally, since 
b2, x O(l), we obtain 

b,, w Pe bio,' + bii) + O(Pe-'), (4.15) 
in which b',O,' is again of the form given by (4.13). 

Before proceeding to the evaluation of the Taylor dispersivity dyadic, some 
additional comments regarding the respective asymptotic orders of the scalar 
components of b, as they appear in the foregoing results, seem warranted. As 
mentioned above (cf. (2.17) et seq.) the vector B-field represents the long-time limit of 
the relative position vectors of the respective centroids of the orientation-specific sub- 
populations (i.e. consisting of individual particles possessing the same instantaneous 

f Cf. the footnote following (3.4). 
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orientation). In the present problem, relative distances of O(Pe) are possible only in the 
direction il of the fluid velocity, and then only as a result of an external force acting in 
the direction i2 along which fluid velocity changes take place. From the definition (2.23) 
it is obvious that b12 is the only component of b representing the latter combination 
of directions, and is therefore the only O(Pe) component. 

4.4. Taylor dispersivity 
The dimensionless dyadic b" (3.8b) is given in Cartesian tensor notation by 

(4.16) 

in which denotes the components of the unit vector 8, and summation over repeated 
indices is understood. Upon making use of: (i) the foregoing order-of-magnitude 
estimates for the various bii; (ii) the fact that in all cases where bij is at least O(1) the 
leading-order terms b$') adopt the functional form (4.13); and (iii) utilizing the 
normalization condition (4.7 b), we ultimately obtain the eigenvalues of b", satisfying 
the characteristic equation Ib"- v/l = 0, which to the indicated orders are 

v1,2 x ~Pe[d~lf((dfl)2+4(df2)2+4(d~3)2)~]+O(1), (4.17a, b) 

( 4 . 1 7 ~ )  

and the respective eigenvectors 

1 W Z  2dF3 
u1.2 = [ I y  d f l  f + 4 ( d f ~ ) ~  +4(df3)')+' d,C, f ((dFl)' + 4(df2)' +4(df3)'); 

(4.18 a, b )  
and u, = (0, - 4 3 ,  d 3 .  ( 4 . 1 8 ~ )  
The various scalar elements dg appearing in the above as well as the O( 1 )  scalars d$), 
4;) and @ appearing in the following are tabulated elsewhere.? 

The most notable result here is the occurrence of a negative eigenvalue, which is 
proportional to Pe. The latter result and the above asymptotic estimates remain 
essentially the same provided that @ -  G $. 0, i.e. as long as F does not belong to the 
null space of the velocity gradient (Frankel & Brenner 1991). In the present example 
this requires that =l 0. Since is the source of the most significant interaction 
between the 'Taylor .. mechanism' and the shear field, we focus in the following on the 
case 4 = 1 ( F =  i2).  

The case F, = 1 

eigenvectors of Dc: 
Substitute &,4 = 0 and make use of (4.16) to obtain the eigenvalues and 

v1,2 x + P e d ~ ) + ~ ( d l ~ ) + d ~ ) ) + O ( P e - l ) ;  v, x O(Pe-2) (4.19a-c) 

and 

These show that the initial trends indicated earlier by the solution for Pe + 1 (cf. (3.13) 
and (3.14)) are complemented by the latter results, which show that for Pe-t 00 the 

t Cf. the footnote following (3.4). 
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principal directions of Dc coincide with those of S. That the negative eigenvalue of 8" 
is associated with the principal direction of contraction in the shear field is a very 
gratifying result, as it appears to support the conjecture o,f the general theory (Frankel 
& Brenner 1991, $ 5 )  that the non-positive nature of Dc is due to the inseparable 
coupling that exists between the Taylor dispersion mechanism and the (deterministic) 
distortion arising from the shear field. 

4.5. Modijied Taylor dispersivity 
From (2.11 a) in conjunction with (2.9) and (2.23) one obtains 

DC = D C + P e b ,  (4.21 a) 

where (4.21 b) 

We focus in the following on the above example and substitute F = i, together with G 
corresponding to simple shear, (3.10), to obtain the scalar components of the dyadic 
8. Substitute these, together with t_he corresponding elements of Dc into (4.21 a) and 
solve the characteristic equation IDc - vll = 0 to obtain the eigenvalues 

(4.22~)  v1 w Pe2 BE) + 0(1), 

(4.22b) 

vg w O(Pe-,), (4.22 c) 

as well as the corresponding eigenvectors 

u3 w [O(Pe-3), O(Pe-,), 11. (4.23 c) 

Comparison of these latter results with those for dC, (4.19) and (4.20), respectively, 
reveals that the pair of O(Pe) eigenvalues of bc, corresponding to the principal 
directions of 3 in the plane of the flow, are here replaced by an eigenvalue which grows 
like Pe2 and another one which, for Pe + co, tends to a constant value (independent of 
Pe), corresponding, respectively, to the direction of the undisturbed flow and the 
direction perpendicular thereto. 

5. Dispersion in simple shear ; arbitrary Peclet numbers (Pe = O( 1)) 
The case of arbitrary PeclCt numbers, where the respective effects of shear and rotary 

diffusion are of comparable importance, is studied in this section by representing the 
fields P r  and P ; B  (i.e. b) by series expansions of surface spherical harmonics and 
computing the coefficients appearing therein by means of appropriate numerical 
routines. 

5.1. Thefield P r  
Owing to the fore-aft symmetry of the particles, P," is necessarily invariant under the 
transformation e + - e. When e is parameterized in terms of the Eulerian angles (0, $), 
this invariance is expressed by the condition 

P;(n - 0, # +n) = PF(0,#). (5.1) 



Taylor dispersion of orientable Brownian particles 145 

Additionally, it is readily verified that the problem posed by (2.21) and (2.27) admits 
a solution which is symmetric about 8 = ix, so that 

(5.2) P,"(x - 8, 4) = PO"(0, $1, 
as well as being symmetric about 4 = x (the latter being a consequence of (5.1) and 
(5.2)). Thus, P," may be represented by the series 

n I Pr = x +An p2,(cos 0) + x (A: cos 2m4 + BE sin 2mqS) Pi:(cos 0) , (5.3) 

which is restricted to even orders and degrees so as to satisfy both of the above 
symmetry conditions. 

Following Stewart & Sorensen (1972), P," is approximated by Galerkin's method. 
To this end, the series expansion (5.3) is truncated beyond some finite value n = N so 
as to obtain the approximation P,"(N). The left-hand side of (2.21 a) is then rendered 
orthogonal to all surface harmonics of degree n < N .  Use of orthogonality properties 
and recursive relations satisfied by the associated Legendre functions Pi: leads 
to a linear system of P + 2 N  algebraic equations for the coefficients A,, A: and 
B; ( n  = 1,2, . . . , n ;  A ,  is determined from the normalization condition (2.21 b)). 

n=o 7 m=l 

5.2. The B-Jield 
Apart from satisfying a fore-aft symmetry condition analogous to (5. l), b, satisfies an 
additional requirement depending upon the symmetry properties of the respective 
forcing terms (cf. (2.28)). When i, j =k 3 or i = j  = 3, the latter terms allow the 
additional condition (5.2) ; hence, bij is represented by the expansion 

b.. = C fc?) PZn(cos 0) + x [ c ? ) ~  cos 2m4 + D!j)m sin 2m4] Pi:(cos 0) 
n I m=l 

( i , j  =+ 3 or i = j  = 3), (5.4) 
in which, similarly to (5.3), both the orders and degrees are restricted to even values. 
When i = 3 o r j  = 3 (i  + j ) ,  the forcing terms are odd with respect to 8 = ix (as well as 
with respect to 4 = x), i.e. 

(5.5) 
Inasmuch as the degrees must be even in order to satisfy (5.1), the orders are here 
restricted to odd values ; consequently, 

b, = C C [Etj)m cos ((2m - 1) 4) +Fij)m sin ((2m - 1) $)] P;:-l(cos 0) 

1.7 a=O m {  

b,(x - 6, $1 = - b,(& 4). 

c o n  

n=1 m=l 

( i  = 3 o r j  = 3;  i + j ) .  (5.6) 
The computational procedure employed is similar to that employed when calculating 

PF. The approximation P,"(N) enables one to obtain the (approximate) forcing terms 
on the right-hand side of (2.28) up to n = N -  1. Substitution of (5.4), truncated beyond 
n = N -  1, into (2.28) yields a linear system of P- 1 equations for C,, CT and DF 
(n = 1,2,. . . , N -  1 ; m = 1,2, .  . . , n ;  with C, = 0 by (2.24b)). From (5.6), we similarly 
obtain a system of N(N-  1) linear algebraic equations for (n = 1,2,. . . , 
N -  1; m = 1,2, ... ,n). The respective systems for the various bij can be solved 
recursively; however, one has to obtain bZj prior to calculating blj since the former 
appears in the forcing term of the latter (cf. (2.28)). 

and 
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5.3. Average translational mobility and Taylor dispersivity 
Substitute-P," from (5.3) into the definition (2.8b) of M in conjunction ~ i t h ~ ( l . 5 )  to 
obtain AM (cf. ( 3 . 2 ~ ) ) .  The results indicate that the degree of anisotropy, AM, of the 
average mobility depends only upon the lowest-order coefficients (of P2 and Pl) in the 
series expansion (5.3) of Po". This fact could have been anticipated in view of the 
orthogonality property (3.6), since the variable portion of M, cf. (1.5), is proportional 
to the dyadic surface spherical harmonic P2. 

Substitution of the appropriate series expansion for b,, (either (5.4) or (5.6)) into 
(4.16) followed by integration yields the components-of bc (explicit expressions of 
which together with those pertaining to the above A M  are omitted here?). As in the 
case of AM, dc depends only upon the lowest-order coefficients of 8, Pi and Pi 
appearing in the respective expansions of b,. This accords with the orthogonality 
property (3.6) together with the expression (3.8 b). 

6. Results and discussion 

is (cf. ( 3 . 2 ~ ) )  

Similarly, normalization of D* with respect to $kT(MI, + 2M,) yields the dimensionless 
relation (cf. (2.9) and ( 3 . 8 ~ ) )  

B* = G + S C ,  ( 6 . 2 ~ )  

When normalized with respect to ;(MI, + 2M,), the (dimensionless) average mobility 

A2 = /+ tiM. (6.1) 

in which (6.2b) 

As pointed out in connection with (3.2a), S M  represents the departure of the average 
mobility from the isotropic result corresponding to sedimentation in a quiescent fluid, 
while Sc represents the contribution to the dispersivity arising from the Taylor 
dispersion mechanism. In this section we study the functional dependence of S M  and 
tic upon the magnitude of the shear rate and the geometry of the particles (in particular 
their deviation from a spherical shape). Explicit results are presented in what follows 
for spheroidal particles, for which the equivalent axis ratio r is simply the ratio between 
their respective polar and equatorial radii. 

Making use of expressions existing in the literature (e.g. Brenner 1974) for A, MI,, M ,  
and d,., one obtains 

and 

In the foregoing, 

A = -  r2- 1 MII-M, - - 2yr2+y-3 
r2 + 1' MII + 2 M ,  8y(r2 - 1 )  

I c0sh-l r 
r(r2 - 1); 

for a prolate spheroid ( 1  < r < 00) 

c0s-l r 
r(1- r2)t 

for an oblate spheroid (0 < r < 1) .  

(6.3 a, b)  

(6.3 c) 

t Cf. the footnote following (3.4). 
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FIGURE 2. Variation of SM, the anisotropic portion of the dimensionless average mobility, with rotary 
Peclet number for a prolate spheroid of axis ratio r = 3. -, Exact solution, (45.3); -----, 
Pe < 1, (3.11) and (3.12), and Pe + 1, (4.5) and (4.6), approximations. (u) The eigenvalues v1 and v 2  
corresponding to principal directions in the plane (x ,y )  of the simple shear flow. (b) The angle a 
between the principal direction associated with v, and the direction of the undisturbed fluid velocity. 

Moreover, /, appearing in the Langevin parameter x = F//kT,  is the 'equivalent' 
radius of the spheroid (i.e. the radius of an equal-volume sphere). 

In each of the following figures the upper portion, (a), describes the variation of the 
pair of eigenvalues v1 and v2 corresponding to the principal directions in the plane of 
the simple shear flow of the relevant dyadic, whereas the lower portion, (b), shows the 
variation of the angle 01 which one (specified) of these principal directions makes with 
the direction i, of the undisturbed fluid velocity. 

Figure 2 describes the dependence of P" upon Pe for a prolate spheroid of axis ratio 
r = 3. The solid lines correspond to the exact solution (85.3) while the dashed lines 
represent, respectively, the small-PeclCt-number, (3.11) and (3.12), and large-PeclCt- 
number, (4.5) and (4.6), asymptotes. In part (a) we see that the absolute values of both 
v1 (> 0) and vz ( < 0) grow monotonically from vl, v 2  = 0 at Pe = 0 (corresponding to 
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an isotropic average mobility) to the respective constant limits v1 = 5.15 x lo-' and 
u2 = -3.81 x lop2 predicted by (4.5) for Pe-t 00. Part (b) shows that the angle a which 
the eigenvector associated with v1 makes with the fluid velocity decreases monotonically 
from a = in (the principal direction of strain) for Pe-tO (cf. (3.2b) and (3.12) et seq.) 
to the limit a = 0 for Pe+ co. 

Since for a prescribed value of I the average mobility is determined by P,"(e), the 
foregoing trends can be explained in terms of the variation with Pe of the orientational 
'equilibrium' distribution. The latter begins as a uniform distribution for Pe = 0, 
becomes proportional to the strain rate s for Pe < 1, (3.1), and reaches a constant 
(independent of Pe) limiting distribution, P:'o)(e), in the limit Pe+ co, (4.3). According 
to Leal & Hinch (1971), with increasing Pe(% l), prolate particles tend to spend an 
increasing portion of their rotational trajectory time along (most of) Jeffery's orbits, 
being nearly aligned with the flow. When this is considered in conjunction with the fact 
that the mobility of a prolate spheroid is largest (smallest) in the axial (transverse) 
direction, one anticipates a monotonic increase in the positive increment of the slip 
velocity (of the particle centre relative to the approaching fluid), represented by v1 
tending, for Pe-t co, to a constant maximal value in the direction of the flow. The 
accompanying deficit in the slip velocity (represented by v, < 0) will likewise increase 
to a constant limit in the direction i,, perpendicular to the undisturbed fluid velocity. 

Figure 3 shows the variation of Sc with Pe for a prolate particle with r = 3. The solid 
lines are obtained from the exact solution (95.3) while the broken lines represent the 
respective approximate solutions for Pe < 1, (3.13) and (3.14), and Pe B 1, (4.19) and 
(4.20). In part (a) we see that both eigenvalues start from the values corresponding to 
sedimentation in a quiescent fluid. The larger one, vl, grows slowly, passes through a 
(shallow) maximum (at Pe x 2) followed by a minimum (at Pe x 50) and then rises 
monotonically. The other eigenvalue, v2,  decreases monotonically, becoming negative 
for Pe > 40. For large PeclCt numbers both curves become mirror images of each other, 
and the absolute values of v1 and u, grow linearly with Pe (cf. (4.19)). (The growth 
looks exponential because of the logarithmic scale selected for Pe.) The angle a in part 
(b) of the figure corresponds to the principal direction associated with v2, the eigenvalue 
which becomes ultimately negative. The curve starts from 01 = 0, i.e. perpendicular to 
the external force (P= i2), which agrees with the result for sedimentation in the 
absence of shear. The angle 01 then decreases to a minimal value a x - 0 . 4 ~  at 
Pe x 11, goes through a shallow maximum (at Pe 125), and finally converges to the 
asymptotic value 01 = -in, i.e. parallel to the principal direction of contraction in the 
shear field. 

As noted above (cf. (4.20) et seq.), this result provides an important insight which 
helps resolve the following 'riddle' in the general theory (Frankel & Brenner 1991): 
adoption of the codeformational view via the application of the Oldroyd derivative in 
(2.7) should presumably eliminate the (deterministic) contributions of the shear flow to 
the rate of spread, thereby rendering Dc positive definite; as the foregoing results 
demonstrate, this is evidently not the case. Frankel & Brenner show that the rate of 
spread embodied in Dc is determined not only by the instantaneous velocities of the 
solute particles, but depends upon their instantaneous configuration in physical space 
as well. In this configuration, which is an outcome of the past evolution of the 'cloud' 
of particles, the respective effects of the Taylor dispersion mechanism and the 
(deterministic) distortion in the shear field, are inseparably coupled. In this respect, the 
latter result - which relates the non-positive nature of Dc to the contraction in the 
shear flow-is a very gratifying one, as it provides clear evidence (in a well-defined 
physical context) in support of the abstract explanations previously given. 
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FIGURE 3. Variation of tic, the dimensionless Taylor dispersivity, with the rotary PeclCt number for 
a prolate spheroid of axis ratio r = 3. -, Exact solution, (45.3); ----- Pe Q 1, (3.13) and (3.14), 
and Pe 9 1, (4.19) and (4.20), approximations. (a) The eigenvalues v1 and v2 corresponding to 
principal directions in the plane (x,y) of the simple shear flow. (b) The angle a between the principal 
direction associated with v2 and the direction of the undisturbed fluid velocity. 

Comparison of the exact and asymptotic solutions presented thus far reveals that the 
asymptotic solution based on the assumption Pe 6 1 is, in fact, a good approximation 
up to Pe NN 1 (and even slightly beyond). On the other hand, the large-PeclCt-number 
approximation becomes quantitatively valuable only for Pe % 200. Both observations 
are now explained. The Pe 6 1 approximation actually presumes that the various 
quantities calculated are slowly varying functions of Pe, and can therefore be described 
by including only a small number of terms in a Taylor serie? expansion. The exact 
solution verifies that this is indeed the case for both A M  and Dc up to Pe z 1. On the 
other hand, the Pe + 1 calculation is based on the assumption that the effect of 
Brownian rotation is weak relative to the convective effect of shear throughout the 
entire orientation space. As mentioned in the footnote appearing at the beginning of 
$4, Hinch & Leal (1972) showed this assumption to be valid only in circumstances 
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FIGURE 4. Variation of tiM, the anisotropic portion of the dimensionless average mobility, with r,  the 
spheroid axis ratio, for Pe = 1000. ~ Exact solution, ($5.3); ----- Pe % 1 approximation, (4.5) 
and (4.6). (a) The eigenvalues v1 and v2 corresponding to the principal directions in the plane (x ,y )  
of the simple shear flow. (b) The angle a between the principal direction associated with v1 and the 
direction of the undisturbed fluid velocity. 

where the stronger requirement Pe >> r3+r-3 is satisfied, It is thus not surprising that 
in the present example (r = 3), the asymptotic solution becomes inaccurate when 
Pe < 100. 

The next two figures indicate the influence of particle geometry (i.e. r)  upon the 
average mobility and dispersivity for the case of large PeclCt numbers (specifically, 
Pe = 1000). An auxiliary goal is to examine the dependence upon r of the quality of 
the approximations previously obtained in $4. 

Figure 4 describes the variation of P' with r for Pe = 1000. The solid lines are 
obtained from the exact solution (§5.3), while the broken lines correspond to the 
Pe % 1 approximation, (4.5) and (4.6), respectively. Part (a) shows that the absolute 
values of both v1 and v2 grow monotonically with increasing deviation of the particle 
from a spherical shape, r = 1. (Obviously for r = 1, vl, v 2  = 0 because the average 
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mobility is always isotropic for a sphere.) This behaviour results from the increasing 
difference between the axial, M,,,  and transverse, M,, mobilities, in conjunction with 
the tendency (cf. Hinch & Leal 1972) of the orientational distribution to become 
increasingly peaked about an orientation nearly aligned with (perpendicular to) the 
fluid velocity for rod-like (disk-like) particles. In both cases this means that the 
particles spend an increasing portion of their time in an orientation which favours a slip 
velocity parallel to the flow. This is manifested by an increasing increment to the 
average mobility in the direction of the flow accompanied by an increasing deficit in the 
direction perpendicuiar thereto. From (6.3b) in conjunction with (6.4), it is readily 
verified that the relative mobility difference is bounded by 

whence v1 and v2 are bounded (from above and below, respectively) by (i, -+) for rod- 
like ( r - t  GO) and by (;, -$) for disk-like ( r +  0) spheroids. Part (a) of the figure shows 
that while both v1 and v2 have not yet reached the above bounds (neither at r = 0.03 
nor at r = 30), they are closer to convergence at the former end of the scale. This 
observation accords with the faster convergence of the relative mobility difference to 
the limit (6.5) for oblate spheroids (like O(r) when r --f 0) than for prolate spheroids 
(only like O(l/logr) when r-+ GO). 

In figure 4(b) we see that, for a wide range of r-values, the principal direction 
associated with v,, the positive eigenvalue, is close to the direction of the undisturbed 
fluid velocity, in a slightly ‘pre-aligned’ orientation (e.g. for $ 6  r < g, a 6 n/lOOO). 
This slight deviation towards the ‘pre-aligned’ orientation was explained by Hinch & 
Leal (1972) as a result of the dynamic balance between the convective rotation of the 
particles, which is biased towards the post-aligned direction, and the diffusive rotary 
flux down orientational gradients, which acts equally in both pre- and post-aligned 
directions. It is thus to be expected (and indeed evident in the figure) that the 
magnitude of the ‘ pre-alignment ’ deviation will increase with increasing departure 
from spherical shape as a consequence of the stronger diffusive influence accompanying 
the steepening of orientational gradients in the vicinity of the velocity direction. 

There is a high degree of similarity between the r > 1 and r < 1 portions of figure 4; 
the curves in part (a) are nearly skew symmetric, whereas part (b) is symmetric with 
respect to r = 1. This similarity stems from the invariance of P; under the 
transformation 

r+ l / r ,  8+0, $-.$+$ 
(cf. Leal & Hinch 1971). Since A h  depends exclusively upon P;, the differences in 6M 
arise only because of the differences in sign and magnitude of the scalar coefficient of 
the relative mobility difference. These differences affect the eigenvalues v1 and v2, but 
not the principal directions of the average mobility deviation. 

Figure 5 illustrates the functional dependence of Sc, the (dimensionless) Taylor 
dispersivity dyadic, upon the axis ratio r for Pe = 1000 according to the exact solution 
(55.3, solid lines) and the Pe B- 1 asymptotic solution ((4.19) and (4.20), dashed lines). 
The latter is seen to provide a good approximation over the range 5 < r 6 5, which, for 
Pe = 1000, is consistent with the requirement Pe % r3+r-3.  

Part (a) of the figure shows that the absolute values of both v1 and v2 initially increase 
with increasing deviation from spherical shape and attain respective maxima at r z 0.3 
and 2.5. With further increased deviation, the foregoing absolute values decrease with 
increasing differences (first quantitative and later qualitative as well) between the 
asymptotes and the exact solutions : while the former decrease monotonically and 
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FIGURE 5. Variation of Sc, the dimensionless Taylor dispersivity, with r,  the spheroid axis ratio, for 
Pe = 1000. -, Exact solution, ($5.3); -----, Pe >> 1 approximation, (4.19) and (4.20). (a) The 
eigenvalues v1 and v g  corresponding to principal directions in the plane (x, y )  of the simple shear flow. 
(b )  The angle a between the principal direction associated with v2 and the direction of the undisturbed 
fluid velocity. 

practically vanish at both ends of the r-scale, the exact solutions (with a single 
exception) pass through respective minima (at r z 0.06 and 11) and then resume 
growth. Figure 5 (b), for the angle a between the principal direction associated with the 
smaller eigenvalue v 2  and the fluid velocity, shows a wide plateau, where a z in, 
followed by a rapid decrease for r > 6. 

The extrema pattern of figure 5(a) results from the balance between two competing 
mechanisms associated with the increasing departure from a spherical shape. 

(i) With increasing r > 1 or decreasing r < 1, mobility differences between the axial 
and transverse directions increase, while the rotary diffusivity decreases, resulting in 
(an unbounded) growth of the scalar coefficient multiplying the dyadic b" in (6.2b). 
These are analogous in the context of the classical Taylor dispersion tube-flow problem 
(Taylor 1953), to the enhancement of longitudinal dispersivity accompanying an 
increase in fluid velocity or a decrease in cross-sectional diffusion, respectively. 
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FIGURE 6. Comparison of Sc and lit for a prolate spheroid of axis ratio Y = 3. -, Dimensionless 
modified Taylor dispersivity, S C ;  ----- , dimensionless Taylor dispersivity, Sc (a) The eigenvalues v1 
and v2 corresponding to principal directions in the plane ( x , y )  of the simple shear flow. (b) The angle 
a between the principal direction associated with v 2  and the direction of the undisturbed fluid velocity. 

(ii) As was pointedput previously (cf. the comment at the conclusion of 94.3), the 
main contribution to D" in the present example, fi = i,, originates from the fluctuations 
in the i,-component of the slip velocity coupled with the simple shear flow (in the i,- 
direction). Therefore, a counteractive influence is associated with the orientational 
distribution becoming more and more sharply peaked, effectively confining the 
particles to an increasingly narrower domain about a certain orientation. Furthermore, 
this particular orientation corresponds to a minimum of the slip-velocity component 
in the direction of P and a concomitant vanishing orientational gradient of this velocity 
component. (Use (1.5) to obtain 

~ ~ ( u - 4  = 2 ( ~ , , - ~ , ) ( e . 4 ( 3 ( / - e e ) . F =  o 
for either e F = 0 (rod-like particles) or e = 8 (disk-like particles).) This, in turn, 
minimizes the i,-velocity differences accompanying the Brownian orientation fluctu- 

6 F L M  2 5 5  
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ations. Thus, the present reduction is comparable in the classical Taylor problem to 
the decrease in longitudinal dispersion brought about through the restriction of the 
lateral motion of solute particles to a small portion of the duct cross-sectional area 
centred about a point of an extremum in the longitudinal fluid velocity. 

Figure 5(a)  thus reveals that with increasing deviation from a spherical shape, it is 
initially the former effect which prevails. With a further departure from spherical 
shape, the latter effect dominates, with the former eventually taking over again. Failure 
of the asymptotic analysis to predict the latter change arises from its inability to 
account properly for the influence of rotary Brownian diffusion in the so-called 
singular 'intermediate domain' (where Pe is no longer large compared with r3 + rP3).  
In reality, by limiting the magnitude of the orientational gradients adjacent to the peak 
of the orientational probability distribution, this diffusive influence is capable of 
effectively putting an end to the process of narrowing the probability peak - in turn, 
enabling the renewed dominance of mechanism (i) over (ii), demonstrated by the 
occurrence of the minima towards both right and left margins of the figure. 

Finally, figure 6 compares the dependence upon Pe of Sc, the Taylor dispersivity 
(dashed lines; solid lines in figure 3) and F, the modified Taylor dispersivity (solid 
lines), respectively, of a particle whose axis ratio is r 7 3. (The relation between 5' and 
dc is the same as (6.2b) defining Sc in terms of Dc.) At small PeclCt numbers the 
respective curves of both families coincide in accordance with the fact that Dc = bc 
for Pe = 0 (cf. (2.1 1 b)). The upper part (a) of the figure shows that with increasing 
PeclCt number the behaviour of the respective larger eigenvalues, vl, is qualitatively 
similar, going initially through a maximum, then a minimum and, finally, diverging 
monotonically. The ultimate divergence of dc is, however, much faster than that of 
Dc, in accordance with the asymptotic result (4 .22~)  predicting a Pe2-like growth, as 
opposed to the linear growth prediction of (4.19a). The other eigenvalue, v2, of 6' 
decreases monotonically; but, unlike the case of Sc, it remains positive. (In accordance 
with the asymptotic prediction (4.22b), when Pe;. 00, v2+ v? > 0. The limit v? turns 
out to be a small number; thus, the scale of the figure makes it appear as though 
v2 + 0.) Figure 6 (b) displays the variation with Pe of the principal direction associated 
with v2. Initially (up to Pe w lo), both curves descend fairly close to each other. The 
curve corresponding to 5' continues to descend monotonically, approaching the 
limiting value 01 = -$. The other principal direction, corresponding to the larger 
eigenvalue, v1 w O(Pe2), will thus coincide at large Peclet numbers with the direction 
of the undisturbed fluid velocity. This indicates that the main effect of the interaction 
(at large Peclet numbers) between the Taylor dispersion mechanism and the shear flow 
will be a substantial enhancement of solute dispersion in the flow direction. 
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